欧几里得学生卡农对欧几里得说:“如果可以可靠的求出两个数字的最大公约数?”
欧几里得说:“用辗转相除法就可以,如果求a和b的最大公约数,如果a大于b,那就是a除以b,然后得到余数,然后再让除数b除以余数,然后一直让除数除以余数,最后余数为0的时候,得到的除数就是a和b的最大公约数。”
卡农说:“假如说1997和615这两个数字。”
欧几里得说:“1997除以615,等于3余出152。”
卡农说:“然后怎么求?”
欧几里得说:“除数除以余数,615除以152等于4余7.”
卡农说:“然后152除以7等于21余5.”
欧几里得接着说:“没错,然后7除以5,等于1余2.”
卡农说:“5除以2,等于2余1.”
欧几里得说:“2除以1,等于2余0.”
卡农说:“不能再往下了,余数已经为0,所以1997和615的最大公约数为1.”
欧几里得说:“所以说,相当于没有最大公约数。”
在以上基础上,后来数学中发展了环的概念,整环R是符合一下接个要求的:
1、A关于加法成为一个Abel群(其零元素记作0);
2、乘法满足结合律:(a*b)*c=a*(b*c);
3、乘法对加法满足分配律:a*(b+c)=a*b+a*c,(a+b)*c=a*c+b*c;
如果环A还满足以下乘法交换律,则称为“交换环”:
4、乘法交换律:a*b=b*a。
如果交换环A还满足以下两条件,就称为“整环”(integraldomain):
5、A中存在非零的乘法单位元,即存在A中的一个元素,记作1,满足:1不等于0,且对任意a,有:e*a=a*e=a;
6、ab=0=>a=0或b=0。
而后来也引入了欧几里得整环的概念,这是抽象代数中,这是一种能作辗转相除法的整环。凡欧几里得整环必为主理想环。
喜欢数学心请大家收藏:()数学心
请勿开启浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。
相邻推荐:啊,张嘴!天道又追着福宝喂饭了 [综漫] 白濑捅刀失败以后 君为依[重生] 花魁夫郎[女尊] [综漫] 除了荒神,所有人都重生了 丘比特今夜失明 穿进炮灰文,太上皇竟能读我心! 我是九世单传的天才幸运糖宝 夏夜撕咬 对照组贴脸开大[快穿] 我的员工全是言情女主 1635改变世界 萝莉:变成吸血姬后被魔女捡到了 [足球同人] 带刀侍卫 [综英美] 维持人设好难 群友全穿越!就我在地球 [少年漫同人] 和新一同居之后 如果男主太晚才出现 无纠+番外 玄灵界都知道我柔弱可怜但能打
好书推荐:揉碎温柔为夫体弱多病和情敌在古代种田搞基建我有了首都户口暗恋指南星际双修指南我只是一朵云瑜伽老师花样多妈宝女她躺平爆红了你不能这么对我带着战略仓库回大唐背叛宗门,你们后悔什么?重生之护花痞少许你三世民国重生回到古代当夫子太子殿下躺平日常我的外甥是雍正公主 驸马 重生重生宠妻时光盗不走的爱人古穿今之甜妻混世小术士高手她带着全家翻身借一缕阳光路过爸爸偷了我的女朋友的东西后妈卷走40万失踪后续